Friday, 19 December 2014

Competency 7.1

Competency 7.1: Describe prominent areas of text mining.

Text mining, also referred to as text data mining, roughly equivalent to text analytics, refers to the process of deriving high-quality information from text. High-quality information is typically derived through the devising of patterns and trends through means such as statistical pattern learning. Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and interpretation of the output. 'High quality' in text mining usually refers to some combination of relevance, novelty, and interestingness. Typical text mining tasks include text categorization, text clustering, concept/entity extraction, production of granular taxonomies, sentiment analysis, document summarization, and entity relation modeling (i.e., learning relations between named entities).

Prominent Areas of Text Mining

Information Retrieval:

Information Retrieval is the process of searching and retrieving the required document from a collection of documents based on the given search query. The search engines we use like Google, Yahoo etc. make use of IR techniques for matching and returning documents relevant to the user's query.

Document Classification/ Text Categorization:

Classification is the process of identifying the category a new observation belongs to, on the basis of a training set consisting of data with pre-defined categories (supervised learning). An example is the classification of email into spam/non-spam.

Clustering:

Clustering is the unsupervised procedure of classification where a set of similar objects are grouped to a cluster. An example analysis would be the summarization of common complaints based on open-ended survey responses.

Trend Analysis:

Trend Analysis is the process of discovering the trends of different topics over a given period of time. It is widely applied in summarizing news events and social network trends. An example would be the prediction of stock prices based on news articles.

Sentiment Analysis:

Sentiment analysis is the process of categorizing opinions based on sentiments like positive, negative or neutral. Sample applications include identifying sentiments in movie reviews and gaining real-time awareness to users' feedback.

No comments:

Post a Comment